Plasma Surface Modification of Polymers for Biomedical Uses

Polyolefins (POs) are a class of synthetic polymers that appear most popularly in daily uses. Despite the natural hdydrophobic characteristic of these materials, the applications of them in biomedicine are very common and important, thank to plasma surface processing technology. By processing, the surfaces of POs have been modified in aspect of morphology and chemical compositions. Thereby the surfaces own high roughness with significant ratio of polar groups after plasma processing, become water-favorable surface. This modification is a key factor to extensively expand the applications of POs into biomedical uses. The chapter shows a close perspective of interaction process between plasma and POs surface, which transfers the surface characteristics to biocompatibility, hydrophilicity and widens their applications in antibacterial, bioadhesive, tissue generation or food container.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 181.89 Price includes VAT (France)

Softcover Book EUR 232.09 Price includes VAT (France)

Hardcover Book EUR 232.09 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Plasma Surface Modification of Biomaterials for Biomedical Applications

Chapter © 2017

Plasma Irradiation of Polymers: Surface to Biological Mitigation

Chapter © 2019

Immobilization of Biomolecules on Plasma-Functionalized Surfaces for Biomedical Applications

Chapter © 2021

References

  1. Lan, P.-T., Jeon, B.-H.: Determination of the electron collision cross-section set for the C4F6 molecule by using an electron swarm study. J. Korean Phys. Soc. 64(9), 1320–1326 (2014) ArticleCASGoogle Scholar
  2. Bastykova, N.K., Moldabekov, Z.A., Kodanova, S.K., Ramazanov, T.S.: Collision between a charged particle and a polarizable neutral particle in plasmas. Phys. Plasmas 27(4), 044502 (2020) Google Scholar
  3. Phan, L.T., Yoon, S.M., Moon, M.W.: Plasma-based nanostructuring of polymers: a review. Polymers-Basel 9(9) (2017) Google Scholar
  4. Lee, A., Moon, M.W., Lim, H., Kim, W.D., Kim, H.Y.: Water harvest via dewing. Langmuir 28(27), 10183–10191 (2012) ArticleCASGoogle Scholar
  5. Brown, P.S., Bhushan, B.: Bioinspired, roughness-induced, water and oil super-philic and super-phobic coatings prepared by adaptable layer-by-layer technique. Sci. Rep-Uk 5 (2015) Google Scholar
  6. Tsougeni, K., Papadakis, G., Gianneli, M., Grammoustianou, A., Constantoudis, V., Dupuy, B., Petrou, P.S., Kakabakos, S.E., Tserepi, A., Gizeli, E., Gogolides, E.: Plasma nanotextured polymeric lab-on-a-chip for highly efficient bacteria capture and lysis. Lab. Chip. 16(1), 120–131 (2016) ArticleCASGoogle Scholar
  7. Togonal, A.S., Foldyna, M., Chen, W.H., Wang, J.X., Neplokh, V., Tchernycheva, M., Nassar, J., Cabarrocas, P.R.I.: Rusli, core-shell heterojunction solar cells based on disordered silicon nanowire arrays. J. Phys. Chem. C 120(5), 2962–2972 (2016) ArticleCASGoogle Scholar
  8. Profili, J., Rousselot, S., Tomassi, E., Briqueleur, E., Ayme-Perrot, D., Stafford, L., Dolle, M.: Toward more sustainable rechargeable aqueous batteries using plasma-treated cellulose-based li-ion electrodes. Acs Sustain. Chem. Eng. 8(12), 4728–4733 (2020) ArticleCASGoogle Scholar
  9. Garcia, L.E.G., MacGregor-Ramiasa, M., Visalakshan, R.M., Vasilev, K.: Protein interactions with nanoengineered polyoxazoline surfaces generated via plasma deposition. Langmuir 33(29), 7322–7331 (2017) ArticleGoogle Scholar
  10. Wang, Y.Z., Hillmyer, M.A.: Oxidatively stable polyolefin thermoplastics and elastomers for biomedical applications. Acs Macro Lett. 6(6), 613–618 (2017) ArticleCASGoogle Scholar
  11. Sauter, D.W., Taoufik, M., Boisson, C.: Polyolefins, a Success Story. Polymers-Basel 9(6) (2017) Google Scholar
  12. Champetier, R.L.G.: Chimie et toxicologie des matières plastiques, p. 57. Compagnie française d’éditions, Paris (1964) Google Scholar
  13. Subramaniam, A., Sethuraman, S.: Chapter 18—biomedical applications of nondegradable polymers. In: Kumbar, S.G., Laurencin, C.T., Deng, M. (eds.) Natural and Synthetic Biomedical Polymers, pp. 301–308. Elsevier, Oxford (2014) ChapterGoogle Scholar
  14. Paxton, N.C., Allenby, M.C., Lewis, P.M., Woodruff, M.A.: Biomedical applications of polyethylene. Eur. Polym. J. 118, 412–428 (2019) ArticleCASGoogle Scholar
  15. Lukowiak, M.C., Ziem, B., Achazi, K., Gunkel-Grabole, G., Popeney, C.S., Thota, B.N.S., Böttcher, C., Krueger, A., Guan, Z., Haag, R.: Carbon-based cores with polyglycerol shells—the importance of core flexibility for encapsulation of hydrophobic guests. J. Mater. Chem. B 3(5), 719–722 (2015) ArticleCASGoogle Scholar
  16. Kurtz, S.M.: UHMWPE Biomaterials Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices. 3rd edn., p. xxiv, 815 pages. Elsevier/WA, William Andrew is an i,mprint of Elsevier, Amsterdam, Boston (2016) Google Scholar
  17. Wolf, C., Lederer, K., Pfragner, R., Schauenstein, K., Ingolic, E., Siegl, V.: Biocompatibility of ultra-high molecular weight polyethylene (UHMW-PE) stabilized with α-tocopherol used for joint endoprostheses assessed in vitro. J. Mater. Sci. Mater. Med. 18(6), 1247–1252 (2007) ArticleCASGoogle Scholar
  18. Novotná, Z., Lacmanová, V., Rimpelová, S., Juřik, P., Polívková, M., Å vorčik, V.: Biocompatibility of Modified Ultra-High-Molecular-Weight Polyethylene, p. 99300Y (2016) Google Scholar
  19. Hussain, M., Naqvi, R.A., Abbas, N., Khan, S.M., Nawaz, S., Hussain, A., Zahra, N., Khalid, M.W.: Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) as a promising polymer material for biomedical applications: a concise review. Polymers-Basel 12(2) (2020) Google Scholar
  20. Fernandez-Bueno, I., Di Lauro, S., Alvarez, I., Lopez, J.C., Garcia-Gutierrez, M.T., Fernandez, I., Larra, E., Pastor, J.C.: Safety and biocompatibility of a new high-density polyethylene-based spherical integrated porous orbital implant: an experimental study in rabbits. J Ophthalmol (2015) Google Scholar
  21. Gibon, E., Cordova, L.A., Lu, L., Lin, T.H., Yao, Z.Y., Hamadouche, M., Goodman, S.B.: The biological response to orthopedic implants for joint replacement. II: Polyethylene, ceramics, PMMA, and the foreign body reaction. J. Biomed. Mater. Res. B 105(6), 1685–1691 (2017) Google Scholar
  22. Gardette, M., Perthue, A., Gardette, J.L., Janecska, T., Foldes, E., Pukanszky, B., Therias, S.: Photo- and thermal-oxidation of polyethylene: comparison of mechanisms and influence of unsaturation content. Polym. Degrad. Stabil. 98(11), 2383–2390 (2013) ArticleCASGoogle Scholar
  23. Lee, S., Maronian, N., Most, S.P., Whipple, M.E., McCulloch, T.M., Stanley, R.B., Farwell, G.: Porous high-density polyethylene for orbital reconstruction. Arch. Otolaryngol. 131(5), 446–450 (2005) ArticleGoogle Scholar
  24. Zaikov, G.E., Gumargalieva, K.Z., Polishchuk, A.Y., Adamyan, A.A., Vinokurova, T.I.: Biodegradation of polyolefins in biomedical applications. Polym.-Plast. Technol. 38(4), 621–646 (1999) ArticleCASGoogle Scholar
  25. Shubhra, Q.T.H., Alam, A., Quaiyyum, M.A.: Mechanical properties of polypropylene composites: a review. J. Thermoplast Compos. 26(3), 362–391 (2011) ArticleGoogle Scholar
  26. Mandolfino, C.: Polypropylene surface modification by low pressure plasma to increase adhesive bonding: Effect of process parameters. Surf. Coat. Technol. 366, 331–337 (2019) ArticleCASGoogle Scholar
  27. Younis, A.A.: Flammability properties of polypropylene containing montmorillonite and some of silicon compounds. Egyptian J. Petroleum 26(1), 1–7 (2017) ArticleGoogle Scholar
  28. Nageswaran, G., Jothi, L., Jagannathan, S.: Chapter 4—plasma assisted polymer modifications. In Thomas, S., Mozetič, M., Cvelbar, U., Špatenka, P., K.M, P. (eds.) Non-Thermal Plasma Technology for Polymeric Materials, pp. 95–127. Elsevier (2019) Google Scholar
  29. Hassan, A., Aal, S.A.A., Shehata, M.M., El-Saftawy, A.A.: Plasma-etching and modification of polyethylene for improved surface structure, wettability and optical behavior. Surf. Rev. Lett. 26(7) (2019) Google Scholar
  30. Ren, C.S., Wang, K., Nie, Q.Y., Wang, D.Z., Guo, S.H.: Surface modification of PE film by DBD plasma in air. Appl. Surf. Sci. 255(5, Part 2), 3421–3425 (2008) Google Scholar
  31. Lehocky, M., Drnovska, H., Lapcikova, B., Barros-Timmons, A.M., Trindade, T., Zembala, M., Lapcik, L.: Plasma surface modification of polyethylene. Colloid Surf. A 222(1–3), 125–131 (2003) ArticleCASGoogle Scholar
  32. Abusrafa, A.E., Habib, S., Krupa, I., Ouederni, M., Popelka, A.: Modification of polyethylene by rf plasma in different/mixture gases. Coatings 9(2) (2019) Google Scholar
  33. Jin, S.Y., Manuel, J., Zhao, X., Park, W.H., Ahn, J.H.: Surface-modified polyethylene separator via oxygen plasma treatment for lithium ion battery. J. Ind. Eng. Chem. 45, 15–21 (2017) ArticleCASGoogle Scholar
  34. Russo, P., Vitiello, L., Sbardella, F., Santos, J.I., Tirillo, J., Bracciale, M.P., Rivilla, I., Sarasini, F.: Effect of carbon nanostructures and fatty acid treatment on the mechanical and thermal performances of flax/polypropylene composites. Polymers-Basel 12(2) (2020) Google Scholar
  35. Zhang, P.H., Zhang, S., Kong, F., Zhang, C., Dong, P., Yan, P., Cheng, X., Ostrikov, K., Shao, T.: Atmospheric-pressure plasma jet deposition of bumpy coating improves polypropylene surface flashover performance in vacuum. Surf. Coat. Technol. 387 (2020) Google Scholar
  36. Mohammadtaheri, S., Jaleh, B., Mohazzab, B.F., Eslamipanah, M., Nasrollahzadeh, M., Varma, R.S.: Greener hydrophilicity improvement of polypropylene membrane by ArF excimer laser treatment. Surf. Coat. Technol. 399 (2020) Google Scholar
  37. Mandolfino, C., Lertora, E., Gambaro, C., Pizzorni, M.: Functionalization of neutral polypropylene by using low pressure plasma treatment: effects on surface characteristics and adhesion properties. Polymers-Basel 11(2) (2019) Google Scholar
  38. Carrino, L., Moroni, G., Polini, W.: Cold plasma treatment of polypropylene surface: a study on wettability and adhesion. J. Mater. Process Tech. 121(2), 373–382 (2002) ArticleCASGoogle Scholar
  39. Grenadyorov, A.S., Solovyev, A.A., Ivanova, NM., Zhulkov, M.O., Chernyavskiy, A.M., Malashchenko, V.V., Khlusov, I.A.: Enhancement of the adhesive strength of antithrombogenic and hemocompatible a-C:H:SiOx films to polypropylene. Surf. Coat. Technol. 399, 126132 (2020) Google Scholar
  40. Ahmed, S.F., Rho, G.H., Lee, J.Y., Kim, S.J., Kim, H.Y., Jang, Y.J., Moon, M.W., Lee, K.R.: Nano-embossed structure on polypropylene induced by low energy Ar ion beam irradiation. Surf. Coat. Tech. 205, S104–S108 (2010) ArticleCASGoogle Scholar
  41. Chansoo Kim, S.F.A., Moon, M.-W., Lee, K.-R.: MD simulation of structural change of polypropylene induced by high energy ion bombardment. In: Proceedings of the Korean Vacuum Society conference (SF-P019) (2010) Google Scholar
  42. Kliewer, S., Wicha, S.G., Broker, A., Naundorf, T., Catmadim, T., Oellingrath, E.K., Rohnke, M., Streit, W.R., Vollstedt, C., Kipphardt, H., Maison, W.: Contact-active antibacterial polyethylene foils via atmospheric air plasma induced polymerisation of quaternary ammonium alts. Colloid Surf. B 186 (2020) Google Scholar
  43. Dvorakova, H., Cech, J., Stupavska, M., Prokes, L., Jurmanova, J., Bursikova, V., Rahel’, J., St'ahel, P.: Fast surface hydrophilization via atmospheric pressure plasma polymerization for biological and technical applications. Polymers-Basel 11(10) (2019) Google Scholar
  44. Mostofi Sarkari, N., Dogan, O., Bat, E., Mohseni, M., Ebrahimi, M.: Tethering vapor-phase deposited GLYMO coupling molecules to silane-crosslinked polyethylene surface via plasma grafting approaches. Appl. Surf. Sci. 513 (2020) Google Scholar
  45. Spyrides, S.M., Prado, M., Araujo, J.R., Simao, R.A., Bastian, F.L.: Effects of plasma on polyethylene fi ber surface for prosthodontic application. J. Appl. Oral Sci. 23(6), 614–622 (2015) ArticleCASGoogle Scholar
  46. Woskowicz, E., Lozynska, M., Kowalik-Klimczak, A., Kacprzynska-Golacka, J., Osuch-Slomka, E., Piasek, A., Gradon, L.: Plasma deposition of antimicrobial coatings based on silver and copper on polypropylene. Polimery-W 65(1), 33–43 (2020) ArticleCASGoogle Scholar
  47. Markovic, D., Tseng, H.H., Nunney, T., Radoicic, M., Ilic-Tomic, T., Radetic, M.: Novel antimicrobial nanocomposite based on polypropylene non-woven fabric, biopolymer alginate and copper oxides nanoparticles. Appl. Surf. Sci. 527 (2020) Google Scholar
  48. Popelka, A., Novak, I., Lehocky, M., Chodak, I., Sedliacik, J., Gajtanska, M., Sedliacikova, M., Vesel, A., Junkar, I., Kleinova, A., Spirkova, M., Bilek, F.: Anti-bacterial treatment of polyethylene by cold plasma for medical purposes. Molecules 17(1), 762–785 (2012) ArticleCASGoogle Scholar
  49. Pandiyaraj, K.N., Ramkumar, M.C., Arun Kumar, A., Padmanabhan, P.V.A., Pichumani, M., Bendavid, A., Cools, P., De Geyter, N., Morent, R., Kumar, V., Gopinath, P., Su, P.-G., Deshmukh, R.R.: Evaluation of surface properties of low density polyethylene (LDPE) films tailored by atmospheric pressure non-thermal plasma (APNTP) assisted co-polymerization and immobilization of chitosan for improvement of antifouling properties. Mater. Sci. Eng. C 94, 150–160 (2019) ArticleCASGoogle Scholar
  50. Tsou, C.H., Yao, W.H., Hung, W.S., Suen, M.C., De Guzman, M., Chen, J., Tsou, C.Y., Wang, R.Y., Chen, J.C., Wu, C.S.: Innovative plasma process of grafting methyl diallyl ammonium salt onto polypropylene to impart antibacterial and hydrophilic surface properties. Ind. Eng. Chem. Res. 57(7), 2537–2545 (2018) ArticleCASGoogle Scholar
  51. Lukowiak, M.C., Wettmarshausen, S., Hidde, G., Landsberger, P., Boenke, V., Rodenacker, K., Braun, U., Friedrich, J.F., Gorbushina, A.A., Haag, R.: Polyglycerol coated polypropylene surfaces for protein and bacteria resistance. Polym. Chem.-Uk 6(8), 1350–1359 (2015) ArticleCASGoogle Scholar
  52. Reznickova, A., Novotna, Z., Kolska, Z., Kasalkova, N.S., Rimpelova, S., Svorcik, V.: Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene. Mater. Sci. Eng. C Mater. Biol. Appl. 52, 259–266 (2015) ArticleCASGoogle Scholar
  53. Svorcik, V., Makajova, Z., Kasalkova-Slepickova, N., Kolska, Z., Bacakova, L.: Plasma-modified and polyethylene glycol-grafted polymers for potential tissue engineering applications. J. Nanosci. Nanotechnol. 12(8), 6665–6671 (2012) ArticleCASGoogle Scholar
  54. Houshyar, S., Sarker, A., Jadhav, A., Kumar, G.S., Bhattacharyya, A., Nayak, R., Shanks, R.A., Saha, T., Rifai, A., Padhye, R., Fox, K.: Polypropylene-nanodiamond composite for hernia mesh. Mat. Sci. Eng. C-Mater. 111 (2020) Google Scholar
  55. Saitaer, X., Sanbhal, N., Qiao, Y.S., Li, Y., Gao, J., Brochu, G., Guidoin, R., Khatri, A., Wang, L.: Polydopamine-inspired surface modification of polypropylene hernia mesh devices via cold oxygen plasma: antibacterial and drug release properties. Coatings 9(3) (2019) Google Scholar
  56. Lim, J.S., Kook, M.S., Jung, S., Park, H.J., Ohk, S.H., Oh, H.K.: Plasma Treated High-Density Polyethylene (HDPE) Medpor Implant Immobilized with rhBMP-2 for improving the bone regeneration. J Nanomater (2014) Google Scholar
  57. Kim, S.J., Song, E., Jo, K., Yun, T., Moon, M.-W., Lee, K.-R.: Composite oxygen-barrier coating on a polypropylene food container. Thin Solid Films 540, 112–117 (2013) ArticleCASGoogle Scholar

Author information

Authors and Affiliations

  1. Division of Nano & Information Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea Phan Lan Thi & Moon Myoung-Woon
  2. Life and Materials Science Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea Phan Lan Thi & Moon Myoung-Woon
  1. Phan Lan Thi